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Resources

Every particle physicist needs a reference to remember all the masses, lifetimes, and prop-

erties of the zoo of particles we know. Fortunately, there are some great resources online

with all the information you need (for free!). The most standard reference is the Particle

Data Group (PDG), which compiles all the relevant particle physics results to date in an

easy-to-access way. You can also order your own booklet if you’d like a physical copy (but

we better spare the trees if we can!)

• https://pdglive.lbl.gov/

• The PDG also has several review pages on particle physics and cosmology: https:

//pdg.lbl.gov/2023/reviews/contents_sports.html — these are more advanced

though.

1 First session

1) Natural units Particle physicists like to express physical quantities in units that are

not defined by human standards, like meters and seconds, but rather by nature itself. As

you learned in your Special Relativity course, the speed of light in a vacuum,

c = 299 792 458 m/s, (1.1)

It is a constant for all observers; therefore, it is as universal a quantity as we could hope

for. Another universal constant is Planck’s constant,

ℏ =
h

2π
= 1.054571817× 10−34 J.s = 6.582119569× 10−16 eV.s, (1.2)

where we used the definition of an electronvolt in the second equality (1 eV = 1.602176634×
10−19 J is the energy acquired by an electron in an electric potential of one volt — hence,

electronvolt is a unit of energy.) Instead of expressing the two constants above in terms of

SI units, we can choose to redefine all of our units in terms of c and ℏ instead. After all,

they are “standard rulers” in the Universe — they do not change. This trick is the essence

of what is called working in natural units.

The most natural convention we can pick is to say that

c = ℏ = 1. (1.3)

This assignment relates distances, time intervals, and energies to each other regarding

fundamental constants. An immediate result is that in natural units, one can use Eq. (1.1)

to show that one second is equivalent to

1 s = 299 792 458 m. (1.4)
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So in natural units, time intervals and distances are interchangeable, and given that the

speed of light is constant, they are always related as in Eq. (1.4). In addition, instead

of talking about speed and velocity in units of meters per second, in natural units, we

quote them as fractions of the speed of light. For example, if your typical walking speed is

v = 1.4 m/s, then, in natural units, we say that you walk at a speed of v = 4.6× 10−9c =

4.6 × 10−9, that is 4.6 × 10−9 times the speed of light. Note that there in natural units,

velocity is a dimensionless number since they are always interpreted as fractions of the

speed of light, which is just unity (c = 1).

This makes physical theories easier to write down and often easier to interpret. For

example, the famous relativistic energy equation for a particle with mass m and momentum

p,

E2 = m2c4 + p2c2, (1.5)

in natural units becomes,

E2 = m2 + p2. (1.6)

The equivalence between mass, momentum, and energy becomes much clearer in this way

since E, m, and p must now all have the same units. By convention, they are all expressed

in electronvolts (eV) – see question a) below.

One more example is the de Broglie wavelength of a photon, denoted by λ. Recalling

that a photon is massless (E2 = p2c2 = p2), we have

λ =
2πℏ
p

=
2πℏc
E

→ λ =
2π

E
(in natural units). (1.7)

So, in natural units, the inverse-proportionality of length and energy becomes immediate.

lengths are expressed in terms of inverse-electron-Volts (1/eV). In fact, this relationship

means all lengths and time intervals can be interpreted as inverse energy. We do this

because the additional factors of c and ℏ in our theories are often superfluous and not very

insightful. It also helps to reduce the number of units to keep track of – at the end of the

day, most quantities of interest are expressed in terms of energy. We will practice with

some examples below:

Question a) The mass of a proton in Kilograms is approximatelymp ≃ 1.67×10−27 kg.

Using natural units, find the mass of a proton at rest in GeV. Does it match the value you

find on the PDG website?
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This one we did together in today’s session, but I go through it again in a different

way below.

We first find one kg in terms of the other units. We can make use of the Planck

constant in units of J.s = (kg m2/s2).s and write

ℏ = 1 =⇒ kg ≃ 1034
s

m2
≃ 3× 1042

1

m
, (1.8)

where we multiplied by c = 1 in the last step. One useful quantity (which is also

unity) is ℏc ≃ 197 MeV.fm, where fm = 10−15 m. Multiplying Equation (1.8) by

ℏc, we get

kg ≃ 6× 1029 MeV, (1.9)

and finally,

mp ≃ 1000 MeV = 1 GeV, (1.10)

which is pretty close to the desired value of mp = 938.272 MeV.

Question b) Today, typical collisions at the Large Hadron Collider (LHC) have a

total energy of E = 13 TeV. What are the typical distances probed by the experiment?

You can think of collisions at the LHC as protons exchanging mediator particles of energies

E = 13 TeV.

Again, using ℏc ≃ 197 MeV.fm, we can calculate the De Broglie wavelength of

photons produced at the LHC by using the equation Equation (1.7) and multi-

plying both sides by ℏc,

λLHC = λLHC × ℏc =
2π

13 TeV
× ℏc (1.11)

=
2π

13× 106 MeV
× 197 MeV.fm ≃ 9.5× 10−5 fm ≃ 9.5× 10−20 m.

Compare these distances with the De Broglie wavelength of a proton at rest (the

right way to think about is to imagine a photon with the same energy as the

proton’s rest energy, i.e. E = mp. This photon is then said to have a “wavelength

of the size of a proton”.)

λp =
2π

mp
≃ 1.3× 10−15 m ≃ 1 fm. (1.12)

Question c) The W boson has a mass of MW ≃ 80 GeV. Even though it is much

heavier than the muon, mµ ≃ 105 MeV, it is still the mediator particle responsible for

muon decay.

i) Sketch the Feynman diagram responsible for this process (Hint: muons decay predomi-

nantly into two neutrinos and an electron).
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ii) In the Standard Model, the lifetime of the muon can be calculated as

1

τµ
≃

G2
Fm

5
µ

192π3
, (1.13)

where GF is called Fermi’s constant. What is the muon lifetime in its rest frame?

iii) Compare your answer with the lifetime of a rho meson, ρ(776). You can find the rho

meson lifetime on the PDG website under “Mesons — Light unflavored.” Why are they so

different? (Hint: the rho meson is so short-lived that its lifetime is given in terms of its

width Γρ, and not of its actual lifetime τρ. In natural units, you can convert one into the

other by using Γρ = 1/τρ.)
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i) With time flowing to the right, we have

ii) Fermi’s constant determines the strength of weak interactions and is given

by GF = 1.1663787 × 10−5 GeV−2. The fact that the dimensionless quantity

GF ×m2
µ ≃ 10−7 is small is the reason why weak interactions are so weak. Let’s

compute the muon width first (Γ = 1/τ)a,

1

τµ
≃

(
10−5 GeV2

)2 × (0.1 GeV)5
1

192π3
≃ ×10−19 GeV, (1.14)

which can be translated into seconds using ℏ,

τµ ≃ 3.09× 10−6 s. (1.15)

This may seem like a very short time, but in the context of particle physics, it is

one of the longest-lived unstable particles we know of.

iii) For comparison, the ρ(776) vector meson decays predominantly via the strong

force; see the diagram below.

The neutral and charge ρ mesons have very similar widths, Γ ≃ 150 MeV, which

translated into a lifetime of

τρ ≃ 4× 10−24 s, (1.16)

which is several many orders of magnitude smaller. This decay is so fast precisely

because of the strength of the strong force.

aThe width of a particle is the intrinsic uncertainty in its rest mass, which is why they decay.

The larger the width of a particle, the shorter-lived it is. One way to understand this is via the

uncertainty principle, ∆t ×∆E ≳ ℏ/2. The larger the uncertainty on the particle’s rest energy

(∆E, in this analogy), the shorter its lifetime (∆t).
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Bonus Question 1) Neutrino Delay In 1987, several neutrino experiments worldwide

observed neutrinos from a supernova called SN1987A. This supernova was a star that

exploded at a distance of D = 52 kpc from the Earth, emitting a huge number of neutrinos

in the process. One experiment observed different neutrinos with different energies for 9 s.

The first neutrino was detected at time t1 = 0 s with energy Eν1 = 20 MeV, a second

one at time t2 = 0.3 s with energy Eν2 = 0.3 MeV, and a last one at time t3 = 9 s and

Eν3 = 10 MeV.

Assuming that the supernova burst was instantaneous (all neutrinos were emitted

simultaneously at t0 < 0), and based on these experimental measurements, is this data

consistent with neutrinos being massless? By considering one pair of events at a time, find

an upper limit on the neutrino mass. You can do this by asking how large the neutrino

mass would have to be to produce an unacceptably large delay between detecting neutrinos

of different energies.
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A supernova happens when a massive star has burned all of its nuclear fuel and

can no longer withstand the gravitational pressure. When the star is imploding,

the electrons and protons in its interior are so close together that they annihilate

into p+ + e− → n + νe, emitting a huge number of neutrinos. This and other

processes produce a huge number of neutrinos in just a few seconds, stealing away

a huge amount of energy from inside the star.

Regardless of the mechanism behind the supernova explosion and neutrino cre-

ation, we assume that all neutrinos are emitted simultaneously and that some

fraction of them travel to Earth, where they are detected. If two neutrinos of the

same energy are emitted at the same time, we expect their arrival time to be equal

(we are neglecting the physical extent of the exploding star and of the detectors

– recall that the distance traveled is much larger than any other distance in the

problem). Therefore, under these (spoiler alert: strong!) assumptions, we expect

the arrival of neutrinos to depend only on their energy (and, therefore, velocity).

First, note that the distance traveled is L = 50 kpc ≃ 1.6 × 1021 m, which

corresponds to a travel time of ≃ 5.3×1012 s for massless particles. To travel that

“distance”, a neutrino with speed vν and energy Eν would take

∆t =
L

vν
. (1.17)

The neutrino velocity is given by vν = pν/Eν , and by virtue of the relativistic

energy relation in Equation (1.6), we can write it as

vν =

√
E2

ν −m2
ν

Eν
=

√
1− m2

ν

E2
ν

. (1.18)

Now – I don’t like squared roots; they are very awkward mathematical objects.

Fortunately, this squared root is close to one, so I will approximate it as one plus

a small correction term. Since it appears in the denominator, all we will need is:

1√
1− m2

ν
E2

ν

≃ 1

1− m2
ν

2E2
ν

≃ 1 +
m2

ν

2E2
ν

+ corrections of order
m4

ν

E4
ν

. (1.19)

If you don’t believe me, you can compute (1 − x)−n and 1 + x/n for a couple of

values of x ≪ 1 and n. This is called a Taylor expansion.

Using the expansion above, we find

∆t = L×
(
1 +

m2
ν

2E2
ν

)
. (1.20)

This is the time that it takes a single neutrino to reach us. We are interested in

the delay between two different neutrinos of different energies. The difference in

propagation time between pairs of neutrinos under our assumptions is simply the

difference in their times of detection, which I will call ti − tj .
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For the first and seconds neutrinos observed, we have

t2 − t1 = ∆t2 −∆t1 = L

(
1 +

m2
ν

2E2
2

)
− L

(
1 +

m2
ν

2E2
1

)
(1.21)

=
Lm2

ν

2

(
1

E2
2

− 1

E2
1

)
,

which gives an idea of what the general formula is. For this pair (1 and 2), their

arrival time differs by 0.3 s. This difference would be caused by a neutrino mass

of

mν =

√
2(t2 − t1)

L

(
1

E2
2

− 1

E2
1

)−1

= 1× 10−7 MeV = 0.1 eV, (1.22)

where we used seconds for t and L and MeV for the energies. This is a fantastic

result and we will see it is more or less what we believe neutrino masses are.

However, it is too soon to declare victory! Let’s compute what the neutrino mass

prediction is given the other pairs of neutrinos.

Pair 1 and 3) Following the procedure above, now with t3 − t1 = 9 s and Eν3 =

10 MeV gives

mν ≃ 20 eV. (1.23)

That is much larger than the one predicted by the neutrino pair 1 and 2. What

happened? Let’s investigate one more combination,

Pair 2 and 3) Following the procedure above, now with t3 − t2 = 9 − 0.3 = 8.7 s

and Eν3 = 10 MeV and Eν2 = 0.3 MeV. Clearly, there’s something off about

this: how can the faster neutrino arrive later? Unfortunately, that is what the

experiment found.

This is not perhaps that surprising given that neutrinos are emitted in a duration

of a few seconds during the supernova explosion. What we are seeing are actu-

ally neutrinos emitted at different times. Our assumptions were too strong, but

they still tell us that supernova neutrinos are an invaluable tool to study their

properties! The distance traveled is so large that their masses can actually cause

a delay, unlike in Earth-based experiments.
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2 Second session

Question 1) Neutrinos can oscillate from one flavor to another in a process called neu-

trino oscillations or flavor transformation. The probability that a neutrino transforms from

a flavor α into a flavor β is denoted as P (να → νβ). For instance, P (νµ → νe) denotes the

probability that a muon neutrino will transform into an electron neutrino after some time.

This type of experiment is called an appearance experiment.

In contrast, we denote the probability of “survival” as P (να → να), representing the

probability that a neutrino of flavor α will continue to be a flavor α after some time. If this

is smaller than one, να neutrinos are said to have disappeared. This type of experiment is

called a disappearance experiment.

a) The quantity P (νµ → ντ ) can be as large as 1 in certain cases. What does this

mean for the quantum numbers Lµ and Lτ in the Standard Model? How about Lµ + Lτ?

As we discussed, the fact that muon neutrinos can transform into tau neutrinos

means that muon number (Lµ) and tau number (Lτ ) are not conserved. In this

case, the sum of the two is conserved, however. This is called lepton universality

violation – meaning neutrinos told us that not all leptons are “born the same”;

something in nature seems to prefer some over others.

This is a small effect, as we will see. So far, it is only visible in neutrino oscillations,

but we have been looking for other processes that have this behavior.

b) So far we have not measured any amount of P (να → να) for any α = e, µ, τ in

experiments. If this probability were non-zero, what would that mean for the lepton sector

and for the quantum number L?

If we observed neutrino oscillations into antineutrinos, we would have observed

lepton number violation. We would know that lepton number L is not conserved.

So far, this has never been observed in nature, but there are good reasons to

believe it exists. The best experimental test of lepton number violation we have

so far is called neutrino-less double beta decay, where two neutrons undergo ra-

dioactive decay simultaneously, creating a pair of electrons, but no neutrinos:

nn → p+p+e−e−. This can only happen if lepton number is violated.

c) Under CP conjugation (charge-parity transformation, transforming particles into

antiparticles) the probability P (να → νβ) becomes P (να → νβ) and under T reversal

(time reversal), the probability P (να → νβ) becomes P (νβ → να). Are disappearance

experiments good tests of CP symmetry? (Hint: CPT symmetry is always conserved in

nature.)
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Disappearance experiments are not so useful for testing CP conservation because

the CP transformation gives the same answer as the CPT transformation. To see

that, note that:

P (νe → νe)
CP−→ P (νe → νe), (2.1)

P (νe → νe)
T−→ P (νe → νe),

P (νe → νe)
CPT−→ P (νe → νe).

Since the transformation is the same as the first, CP is guaranteed not to change

the probability in this case.

For appearance, on the other hand,

P (νe → νµ)
CP−→ P (νe → νµ), (2.2)

P (νe → νµ)
T−→ P (νµ → νe),

P (νe → νµ)
CPT−→ P (νµ → νe).

In this case, CPT does something completely different from CP, and we can hope

to observe CP violation in the appearance experiment. We can also look for T

violation by comparing P (νe → νµ) and P (νµ → νe).

Ps. Why is CPT conserved? This is one of the deepest symmetries in particle

physics and is intrinsically related to the structure of space-time. If physics does

not depend on the position and time coordinates that you find yourself in (some-

thing called Lorentz symmetry), then CPT should be conserved. People still look

for violations of CPT, but so far, nothing. And that’s, in a sense, a good thing.

All of our best theories obey CPT and Lorentz symmetry – something outside

this paradigm would be incredibly weird.

There is a nice video by Veritasium on this: https://www.youtube.com/watch?

v=yArprk0q9eE.
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Neutrino oscillations) Let me start with some definitions. The quantum mechanical

state of a neutrino of a given flavor is denoted by:

|να⟩ . (2.3)

Here the flavor α = e, µ or τ is determined by the charged lepton with which the neutrino

interacts. These are the states that we produce or measure in our experiments. How-

ever, they do not have a determined mass1. When neutrinos propagate, they travel in a

superposition of different states called neutrino mass states. They are represented as

|νi⟩ , (2.4)

where i = 1, 2, 3 identifies the mass of the neutrino. That is, |ν1⟩ has a mass m1, and |ν2⟩
has a mass m2, and so on. These are the states that experience time and space in the usual

way (similarly to an electron or proton).

Let’s simplify the problem and assume that there are only two neutrinos. I can count

them as flavor states or as mass states: νe and νµ, or ν1 and ν2. When I produce a flavor

state in my experiment, I produce a superposition of states:

|νe⟩ = cos θ |ν1⟩+ sin θ |ν2⟩ , (2.5)

|νµ⟩ = − sin θ |ν1⟩+ cos θ |ν2⟩ , (2.6)

where the θ is some angle that controls how misaligned the neutrino mass and flavor states

are. In this convention, θ = 0 means that the νe is just the first mass state.

Recall that these states satisfy the following properties 2:

⟨νe|νe⟩ = 1, ⟨νµ|νµ⟩ = 1, and ⟨νe|νµ⟩ = 0, (2.7)

⟨ν1|ν1⟩ = 1, ⟨ν2|ν2⟩ = 1, and ⟨ν1|ν2⟩ = 0. (2.8)

After some time t has passed, a neutrino mass state evolves according to its “internal

clock”, and changes. Remember, this “internal clock” ticks at different speeds depending

on the mass of the neutrino. We denote the time-evolved state as |νi(t)⟩. The mathematical

relation is given by

|ν1(t)⟩ = e−iEν1 t |ν1⟩ , (2.9)

1How is this possible?! Particles are supposed to have one specific mass, right? Yes, that is true. The

correct way to think about it is to think of flavor states as made-up mathematical objects and consider

only the mass states as physical particles. In this picture, when pions decay for example, they are actually

producing all neutrino mass states ( π+ → e+ν1, π
+ → e+ν2, and π+ → e+ν3), but some mass states

are produced more often than others, depending on their affinity with the charged-lepton companion. For

instance, the first neutrino, ν1, has a higher affinity with electrons than ν2, and so the object |νe⟩ contains
more |ν1⟩ than |ν2⟩. Conversely, we also say that ν1 has a larger νe component than ν2. Because neutrino

masses are so small and close together, the different neutrino mass propagate almost in synchrony and

cannot be distinguished given the quantum mechanical uncertainty on their energies and masses. Just like

Schröedinger’s cat, flavor states have masses m1, m2, and m3 all at once!
2can you show it?
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and similarly for ν2. Since e−iEν1 t is just a number, we note that

⟨νi|νj(t)⟩ = ⟨νi| e−iEνj t |νj⟩ = e−iEνj t ⟨νi|νj⟩ =

{
1, if i = j

0, otherwise
(2.10)

but for time-evolved flavor states, ⟨να|νβ(t)⟩
Using the properties above, we will calculate the oscillation probability for a muon-

neutrino beam to appear as an electron-neutrino beam after some time t = L/c = L.

Let’s begin by asking how much overlap is there between a νe state and the νµ state

after the latter has evolved for some time t? This is simply given by what we call the

“amplitude”,

Aνµ→νe = ⟨νe|νµ(t)⟩ = (⟨ν1| cos θ + ⟨ν2| sin θ)× (− sin θ |ν1(t)⟩+ cos θ |ν2(t)⟩) . (2.11)

Clearly, for t = 0, this should be zero. But for t ̸= 0, we will need to evolve the mass states.

Keeping only the non-zero bra-kets, we get

Aνµ→νe = − cos θ sin θ ⟨ν1|ν1(t)⟩+ cos θ sin θ ⟨ν2|ν2(t)⟩ (2.12)

= − cos θ sin θe−iEν1 t ⟨ν1|ν1⟩+ cos θ sin θe−iEν2 t ⟨ν2|ν2⟩ (2.13)

= cos θ sin θ(e−iEν2 t − e−iEν1 t), (2.14)

we will use this formula to obtain the probability below.

Question 1) Assume that all mass state neutrinos have roughly the same momentum

p1 ≃ p2 ≡ p, expand the exponent in the complex exponential above using:

E =
√
p2 +m2 ≃ p

(
1 +

m2

2p2

)
. (2.15)

Can you factor out part of the exponential from the sum? You should find something that

looks like cos θ sin θe(... )(1− e(... )). (Hint: recall that ei(x+y) = eixeiy).

By using the squared root expansion and the properties of the exponential func-

tion, we can show

Aνµ→νe = sin θ cos θe−iEν2 t(1− ei(Eν2−Eν1 )t) (2.16)

=
sin 2θ

2
e−iEν2 t(1− e

i
∆m2

21t

2p ),

where ∆m2
21 = m2

2 −m2
1. Let me now define the variable for the next part,

∆21 =
∆m2

21t

2p
. (2.17)
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Question 2) Now, square the amplitude to obtain the probability of oscillations:

P (νµ → νe) = |Aνµ→νe |2. (2.18)

Using Euler’s identity eix = cosx+i sinx, express your answer using only sines and cosines.

(Hint: recall |a|2 = a∗a and that (eix)∗ = e−ix. You will also need some trigonometry.).

By using the squared root expansion and the properties of the exponential function

(|eix| = 1), we can show

|Aνµ→νe |2 =
sin2 2θ

4

∣∣∣∣e−iEν2 t(1− e
i
∆m2

21t

2p )

∣∣∣∣2 (2.19)

=
sin2 2θ

4

∣∣e−iEν2 t
∣∣2 ∣∣(1− ei∆21)

∣∣2
=

sin2 2θ

4
|(1− cos∆21 − i sin∆21)|2

=
sin2 2θ

4

(
(1− cos∆21)

2 + (sin∆21)
2
)

=
sin2 2θ

4

(
1 + 2 cos∆21 + cos2∆21 + sin2∆21

)
= sin2 2θ

(
2 + 2 cos∆21

4

)
= sin2 2θ sin2

∆21

2
= sin2 2θ sin2

∆m2
21t

2p
,

which matches the expression below when p → Eν and t → L.

Question 3) Usually we measure the distance traveled by neutrinos L = t× c instead of

the time, and use energy and momentum interchangeably (p ∼ Eν). You should then find

the following form for the probability,

P (νµ → νe) = sin2 2θ sin2
∆m2

21L

4Eν
. (2.20)

a) Is this the same as your expression? Rewrite it so that you can use the following

units: km for L, GeV for Eν , and eV2 for ∆m2
21 = m2

2−m2
1. Calculate it for L = 1000 km,

δm2
21 ∼ 2× 10−3, and Eν = 5 GeV assuming θ = π/4.
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Firstly, it should be clear that in natural units, the argument of the second sine

has to be dimensionless (clearly this has to be the case, as otherwise, changing

units would change the sine and therefore the probability. Physics is independent

of your chosen units!). That means that if ∆m2 is expressed in eV2, as usual,

then L would have to be expressed in 1/eV and p in eV.

We also know that ℏc = 1 = 197 fm.MeV, so eV−1 = 197 × 10−9 m = 1.97 ×
10−10 km, so multiplying and dividing by eV2,

∆m2
21L

4Eν
=

 ∆m2
21

eV2
L

eV−1

4 Eν
eV

 = 0.25×

 ∆m2
21

eV2
L

1.97×10−10 km
Eν

10−9 GeV

 =
0.25

0.197
×

 ∆m2
21

eV2
L
km

Eν
GeV

 ,

(2.21)

so we can simply use

P (νµ → νe) = sin2 2θ sin2
(
1.27

∆m2
21[eV

2]L[ km]

Eν [GeV]

)
. (2.22)

b) If the mixing angle is large, θ = π/4, how large is the maximum and minimum value

this probability can take, depending on L/E and ∆m2?

Easy: 1 and 0. For arbitrary values of θ, the minimum is still zero, but the

maximum appearance probability is simply sin2 2θ.

c) What happens when L/E → ∞? What would the experiment see if its measurement

of the neutrino energy is not always accurate?

The neutrinos oscillate very fast and the detector cannot distinguish peaks from

the oscillation’s throats, so it sees just an averaged-out sinusoidal. Very small

changes in Eν cause a big change in P . From the average of the square of a sine

function, we get

P (νµ → νe) =
1

2
sin2 2θ. (2.23)
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