New physics interpretations of the MiniBooNE excess at the MicroBooNE experiment

Matheus Hostert

Perimeter Institute and University of Minnesota

UNIVERSITY OF MINNESOTA

SLAC EPP Theory Seminar

In this talk

- The short-baseline puzzle
- Interpreting the latest MicroBooNE results
 - Model-independent considerations
 - The impact on an eV-sterile neutrinos
- Future directions:
 - More data at short-baseline detectors
 - Alternative explanations (e+e-, coherent photons, etc)

Collaborators

Argüelles et al, arXiv:2111.10359

Carlos Argüelles Harvard University

Ivan Estebán Ohio State University

Kevin Kelly CERN

Joachim Kopp CERN

Pedro Machado Fermilab

Ivan Martinez-Soler Harvard University

Yuber F. Perez-Gonzalez Durham University

- Is there **CP violation** in the lepton sector?
- Which neutrino is the heaviest, 3 or 2 (Normal or Inverted **Ordering**)?
- Can we measure and over-constrain the **PMNS**, like CKM?

- Is there **CP violation** in the lepton sector?
- Which neutrino is the heaviest, 3 or 2 (Normal or Inverted **Ordering**)?
- Can we measure and over-constrain the **PMNS**, like CKM?

- Is there **CP violation** in the lepton sector?
- Which neutrino is the heaviest, 3 or 2 (Normal or Inverted Ordering)?
- Can we measure and over-constrain the **PMNS**, like CKM?

This talk:

• Do we see any more surprises along the way? "New" new physics?

- Is there **CP violation** in the lepton sector?
- Which neutrino is the heaviest, 3 or 2 (Normal or Inverted Ordering)?
- Can we measure and over-constrain the **PMNS**, like CKM?

Can also have important consequences for this program

This talk:

• Do we see any more surprises along the way? "New" new physics?

Some context and oscillation notation

Accelerator neutrino experiment:

Some context and oscillation notation

Accelerator neutrino experiment:

Short-baseline: search for oscillations that develop before atmospheric and solar frequencies.

$$\frac{L}{E} \sim \frac{100 \text{ m}}{100 \text{ MeV}}$$

SBL oscillations can develop due to a mostly-sterile neutrino:

$$\Delta m_{41}^2 \sim \mathcal{O}(1) \; \mathrm{eV}^2$$

Effectively a 2-neutrino oscillation system: $\Delta \equiv 1.27 \frac{\Delta m^2 [eV^2] L[m]}{m^2 Effectively}$ *E*[MeV]

$$P_{\nu_{\mu} \to \nu_{\mu}} = 1 - \sin^2 2\theta_{\mu\mu} \sin^2 \Delta = 1 - 4 |U_{\mu4}|^2 (1 - |U_{\mu4}|^2) \sin^2 \Delta$$

$$P_{\nu_e \to \nu_e} = 1 - \sin^2 2\theta_{ee} \sin^2 \Delta = 1 - 4 |U_{e4}|^2 (1 - |U_{e4}|^2) \sin^2 \Delta$$

$$P_{\nu_{\mu} \to \nu_{e}} = \sin^{2} 2\theta_{e\mu} \sin^{2} \Delta = 4 |U_{e4}|^{2} |U_{\mu4}|^{2} \sin^{2} \Delta$$

The Short-Baseline Puzzle

The Short-Baseline Puzzle (a historical detour)

Short-baseline oscillations have been discussed for a long time — even before we figured out the resolution to the Solar problem.

<u>PS-191 (1984 at CERN)</u> Phys.Lett.B 181 (1986) 173-177

A total of 23 ± 8 excess events (3σ) .

PS191 excess not seen at E734.

Short-baseline oscillations have been discussed for a long time — even before we figured out the resolution to the Solar problem.

<u>PS-191 (1984 at CERN)</u> Phys.Lett.B 181 (1986) 173-177

A total of 23 ± 8 excess events (3σ) .

PS191 excess not seen at E734.

PS191 detector moved to BNL, behind E734.

E-816 (1986 at BNL) Nucl.Phys.B 335 (1990) 517-545

Reports a 2σ excess.

$$\frac{\left(\nu_e/\nu_{\mu}\right)_{\text{obs}}}{\left(\nu_e/\nu_{\mu}\right)_{\text{pred}}} = 2.2 \pm 0.6$$

13

Short-baseline oscillations have been discussed for a long time — even before we figured out the resolution to the Solar problem.

<u>PS-191 (1984 at CERN)</u> Phys.Lett.B 181 (1986) 173-177

A total of 23 ± 8 excess events (3σ) .

PS191 detector moved to BNL, behind E734.

PS191 excess not seen at E734.

E-776 (1986 at BNL) Phys.Rev.Lett. 68 (1992) 274-277 Phys.Rev.Lett. 62 (1989) 2237-2240

E-816 (1986 at BNL) Nucl.Phys.B 335 (1990) 517-545

Reports a 2σ excess.

$$\frac{\left(\nu_e/\nu_{\mu}\right)_{\text{obs}}}{\left(\nu_e/\nu_{\mu}\right)_{\text{pred}}} = 2.2 \pm 0.6$$

Initially reports 2σ excess, but final result shows no excess.

14

Short-baseline oscillations have been discussed for a long time — even before we figured out the resolution to the Solar problem.

<u>PS-191 (1984 at CERN)</u> Phys.Lett.B 181 (1986) 173-177

A total of 23 ± 8 excess events (3σ) .

PS191 detector moved to BNL, behind E734.

E-816 (1986 at BNL) Nucl.Phys.B 335 (1990) 517-545

Reports a 2σ excess.

$$\frac{\left(\nu_e/\nu_{\mu}\right)_{\text{obs}}}{\left(\nu_e/\nu_{\mu}\right)_{\text{pred}}} = 2.2 \pm 0.6$$

Excess attributed to unknown systematics in both experiments.

shows no excess.

SKAT ($\langle E_{\nu} \rangle \sim 8 \text{ GeV}$) LANL E615 (π DAR)

The Short-Baseline Puzzle (Several years later...)

LSND: 1993 - 1998

Phys.Rev.D 64 (2001) 112007

SBL oscillation

Inverse-Beta-decay detection

LSND & KARMEN

KARMEN: 1990 - 2001

Phys.Rev.D 65 (2002) 112001

$$egin{array}{cccc} + & + &
u_{\mu} \ + & + &
u_{e} & + &
u_{\mu} \ \hline \overline{
u}_{\mu}
ightarrow \overline{
u}_{e} \end{array}$$

LSND: 1993 - 1998

Phys.Rev.D 64 (2001) 112007

- 1) 800 MeV proton beam, 1.8e23 POT.
- π DAR and DIF:12° nu/p beam angle. 2
- π- contamination: $\bar{\nu}_e/\bar{\nu}_\mu \sim 8 imes 10^{-4}$ 3)
- Baseline of 30 m 4)
- ~167 tonnes of liquid scintillator 5)
- 6) 8.3 m long detector.

SBL oscillation

Inverse-Beta-decay detection

Excess: $87.9 \pm 22.4 \pm 6$ events 3.8σ significance

We needed more data.

LSND & KARMEN

KARMEN: 1990 - 2001

Phys.Rev.D 65 (2002) 112001

$$\overline{\nu}_{\mu}
ightarrow \overline{\nu}_{e}$$

800 MeV proton beam, 6e22 POT. 1)

- π mostly DAR. Detector 90° from p beam. 2
- π- contamination: $\bar{\nu}_e/\bar{\nu}_\mu = 6.4 \cdot 10^{-4}$ 3)
- Baseline of 17.7 m 4)
- 5) ~57 tonnes of liquid scintillator
- 3.5 m long detector. 6)

No excess observed, but could not exclude LSND results.

The MiniBooNE excess

Latest MiniBooNE results:

MiniBooNE coll., Phys. Rev. D 103, 052002 (2021)

Interaction

 $\nu_{\mu}CCQE$ ν_µ+n→p+μ

 $v_e CCQE$ v_e+n→p+e

 $NC\pi^{\circ}$ $v+N\rightarrow v+N+\pi^{0}$

To this day, the most sensitive SBL $\nu_{\mu} \rightarrow \nu_{e}$ appearance experiment.

The MiniBooNE excess

Latest MiniBooNE results:

MiniBooNE coll., Phys. Rev. D 103, 052002 (2021)

 $v_e CCQE$ ν_e+n→p+e NCπ° $v+N\rightarrow v+N+\pi^{0}$ M. Ross-Lonergan

Interaction

 $\nu_{\mu}CCQE$

ν_µ+n→p+μ

To this day, the most sensitive SBL $\nu_{\mu} \rightarrow \nu_{e}$ appearance experiment.

 \widehat{PI} M. Hostert

Data-Driven Background Estimates

Hourlier, Adrien, MiniBooNE Coll. Neutrino2020

1) Significance increases when restricting to smaller fiducial volume

Selection	Excess	Significance
R < 5 m	560.6 ± 119.6	4.7σ
R < 4 m	$458.6\pm81.9.5$	5.6σ
R < 3 m	190.1 ± 41.2	4.6σ

2) Excess overlaps w/ beam time

ve from µ decay is constrained by in situ

v_µ CCQE measurement

$v_{\rm e}$ from K decay

constrained from *in situ* high energy events + SciBooNE high energy v_{μ} event rate

Data-Driven Background Estimates

Hourlier, Adrien, MiniBooNE Coll, Neutrino2020

An Altarelli Cocktail for the MiniBooNE Anomaly?

Vedran Brdar^{1, 2, a} and Joachim Kopp^{3, 4, b}

arxiv:2109.08157

Significance increases when restricting to smaller fiducial volume

Selection	Excess	Significance
R < 5 m	560.6 ± 119.6	4.7σ
R < 4 m	$458.6\pm81.9.5$	5.6σ
R < 3 m	190.1 ± 41.2	4.6σ

2) Excess overlaps w/ beam time

ve from K decay constrained from in situ

is constrained by in situ

v_µ CCQE measurement

ve from µ decay

high energy events + SciBooNE high energy v_µ event rate

We find that not even a combination of uncertainties in different channels adding up unfavorably (an "Altarelli cocktail") appears to be sufficient to resolve the MiniBooNE anomaly. Varying the radiative branching ratios of the $\Delta(1232)$ and N(1440) resonances by $\pm 2\sigma$, however, reduces its significance from 4σ to less than 3σ .

Is there enough evidence for a sterile neutrino?

 $\begin{array}{l} {\rm A}\, \nu_\mu \to \nu_e \, {\rm appearance} \, {\rm oscillation} \, {\rm implies} \\ \nu_e \, {\rm and} \, \nu_\mu \, {\rm disappearance}. \end{array}$

 \widehat{PI} M. Hostert

Is there enough evidence for a sterile neutrino?

PI M. Hostert

Reactors and gallium experiments have been seeing (different) deficits in neutrino flux.

No single experiment gives conclusive evidence.

Inconclusive.

Is there enough evidence for a sterile neutrino?

Latest results from MicroBooNE

MiniBooNE

MicroBooNE

Disentangling the final states behind the low-energy excess

Liquid-Argon Time-Projection-Chamber (TPC)

3D images of charged particles produced in neutrino interactions

MicroBooNE is able to differentiate between electrons and photons:

I) vertex-shower separation

ii) dE/dx at the beginning of the shower

Single-photon results $\Delta(1232)$ radiative decay

 N,Δ,N^*

Ζ

Single-photon results Δ (1232) radiative decay

PI M. Hostert

$1\gamma 0p$

• (6.80x10²⁰ POT) Total Constrained Background & Error

Constrained

Conclusion:

 $\Delta(1232)$ radiative constrained as an explanation of MiniBooNE:

 $x_{\Delta} = \frac{\mathscr{B}_{\text{eff}}(\Delta \to \gamma N)}{\mathscr{B}(\Delta \to \gamma N)}, \quad x_{\Delta} < 2.3 \ (90 \% \text{ CL})$

Other single-photon interpretations still untested:

- coherent photons
- new particles decaying to single photons

Electron-neutrino searches at MicroBooNE

Relevant for explanations based on oscillations or any effective $\nu_{\mu} \rightarrow \nu_{e}$ appearance signals.

Instead of an oscillation search, MicroBooNE performed a dedicated search for what they call:

electron low-energy-excess (eLEE) signal model

This is justified given the issues with sterile neutrinos, but what does it mean?

eLEE template

Central value of

 $(data)_i$ - $(background)_i$

eLEE template

Central value of

 $(data)_i$ - $(background)_i$

"Unfold" detector resolution, selection cuts, and efficiencies into a true ν_e spectrum.

Energy dependent modification to the intrinsic ν_{ρ} rate.

eLEE template

Central value of

 $(data)_i$ - $(background)_i$

"Unfold" detector resolution, selection cuts, and efficiencies into a true ν_e spectrum.

Energy dependent modification to the intrinsic ν_{ρ} rate.

MicroBooNE selection

Use unfolded eLEE template to predict the event rate in a given MicroBooNE analysis.

eLEE template

Central value of

 $(data)_i$ - $(background)_i$

"Unfold" detector resolution, selection cuts, and efficiencies into a true ν_e spectrum.

Energy dependent modification to the intrinsic ν_e rate.

Use unfolded eLEE template to predict the event rate in a given MicroBooNE analysis.

Electron-neutrino searches at MicroBooNE MicroBooNE's three-prong approach

Different reconstruction algorithms and focus on different event classes

Fully inclusive: 1e1X(Wire-Cell)

Electron-neutrino searches at MicroBooNE MicroBooNE's three-prong approach

PI M. Hostert

Different reconstruction algorithms and focus on different event classes

Electron-neutrino searches at MicroBooNE The technical conclusion

For instance, in the Inclusive analysis:

No excess observed

+ slight deficit of events.

Electron-neutrino searches at MicroBooNE The technical conclusion

For instance, in the Inclusive analysis:

Quantitatively:

eLEE strength

No excess observed

+ slight deficit of events.

eLEE strength: the overall normalization of the eLEE template.

Electron-neutrino searches at MicroBooNE The technical conclusion

Overall conclusions:

Electron-neutrino searches at MicroBooNE The non-technical conclusions

Headlines:

Neutrino result heralds new chapter in physics B B C

> Scientists find no hint of sterile neutrino PHYS ORG

MicroBooNE experiment's first results show no hint of a **Fermilab** sterile neutrino

Sterile neutrinos ruled out by MicroBooNE, but mysterious excess remains unexplained physicsworld

Electron-neutrino searches at MicroBooNE The non-technical conclusions

Headlines:

Neutrino result heralds new chapter in physics B B C

> Scientists find no hint of sterile neutrino PHYS ORG

MicroBooNE experiment's first results show no hint of a sterile neutrino **Fermilab**

Sterile neutrinos ruled out by MicroBooNE, but mysterious excess remains unexplained physicsworld

What the community is really thinking:

- How about MiniBooNE systematics? What happens if we deviate from the central value of the eLEE template?
- Are sterile neutrinos excluded? If so, where are the exclusion plots?
 - Does MicroBooNE put an end to the MiniBooNE anomaly?

Q1

What happens if we deviate from the central value of the eLEE template?

Interpreting the MicroBooNE results in light of MiniBooNE systematics New templates

By how much can we deviate from the central value of the eLEE?

What we call "the MiniBooNE excess" is very dependent on the background systematic uncertainties

Interpreting the MicroBooNE results in light of MiniBooNE systematics New templates

By how much can we deviate from the central value of the eLEE?

What we call "the MiniBooNE excess" is very dependent on the background systematic uncertainties

Our new approach:

Using a toy MCMC we generalize the MicroBooNE analysis to include systematic uncertainties:

- Vary the normalization of 4 classes of MiniBooNE backgrounds,
- Compute the MiniBooNE p-value, 2)
- Compute the MicroBooNE prediction with unfolding method, 3)
- 4) Compute the χ^2 of the new template at MicroBooNE

Our new approach:

Using a toy MCMC we generalize the MicroBooNE analysis to include systematic uncertainties:

- Vary the normalization of 4 classes of MiniBooNE backgrounds,
- Compute the MiniBooNE p-value, 2)
- Compute the MicroBooNE prediction with unfolding method, 3)
- 4) Compute the χ^2 of the new template at MicroBooNE

Our new approach:

Using a toy MCMC we generalize the MicroBooNE analysis to include systematic uncertainties:

- Vary the normalization of 4 classes of MiniBooNE backgrounds,
- Compute the MiniBooNE p-value, 2)
- Compute the MicroBooNE prediction with unfolding method, 3)
- 4) Compute the χ^2 of the new template at MicroBooNE

Our new approach:

Using a toy MCMC we generalize the MicroBooNE analysis to include systematic uncertainties:

- Vary the normalization of 4 classes of MiniBooNE backgrounds,
- Compute the MiniBooNE p-value, 2)
- Compute the MicroBooNE prediction with unfolding method, 3)
- 4) Compute the χ^2 of the new template at MicroBooNE

Q2

Are sterile neutrinos excluded? If so, where are the exclusion plots?

Using MicroBooNE data releases:

(Inclusive* and CCQE)

we perform an oscillation analysis to derive the limits on sterile neutrinos. Oscillation search for **appearance only**:

$$\nu_{\mu} \rightarrow \nu_{e}$$

Full data release Only spectra **Inclusive** <u>CCQE</u> available and covariances Energies 1 available* Energies ↓ Backgrounds. 1 Backgrounds \downarrow Statistics ↑ Statistics ↓ Intrinsics 1 Intrinsics \downarrow MicroBooNE 2021 (Inclusive FC unconstrained) MicroBooNE 6.67 ×10²⁰ POT 🕂 🕂 Data (25)

PI M. Hostert

* efficiencies are derived from digitized smearing matrices.

Backgrounds are not "oscillated".

Using MicroBooNE data releases:

(Inclusive* and CCQE)

we perform an oscillation analysis to derive the limits on sterile neutrinos.

$$\nu_{\mu} \rightarrow \nu_{e}$$

Only spectra **Inclusive** <u>CCQE</u> and covariances Energies 1 available* Energies ↓ Backgrounds. 1 Backgrounds \downarrow Statistics ↑ Statistics ↓ Intrinsics 1 Intrinsics \downarrow MicroBooNE 2021 (Inclusive FC unconstrained) MicroBooNE 6.67 ×10²⁰ POT

PI M. Hostert

* efficiencies are derived from digitized smearing matrices.

Using MicroBooNE data releases:

(Inclusive* and CCQE)

we perform an oscillation analysis to derive the limits on sterile neutrinos. Oscillation search for **appearance only**:

$$\nu_{\mu} \rightarrow \nu_{e}$$

Only spectra **Inclusive CCQE** and covariances Energies 1 available* Energies ↓ Backgrounds. 1 Backgrounds \downarrow Statistics ↑ Statistics \downarrow Intrinsics 1 Intrinsics \downarrow MicroBooNE 2021 (Inclusive FC unconstrained) MicroBooNE 6.67 ×10²⁰ POT

PI M. Hostert

* efficiencies are derived from digitized smearing matrices.

PI M. Hostert

* efficiencies are derived from digitized smearing matrices.

 $\sin^2(2\theta_{\mu e}) \equiv 4|U_{\mu 4}|^2|U_{e4}|^2$

Fully consistent oscillation search:

 $\nu_{\mu} \rightarrow \nu_{\mu}$ $\nu_{\mu} \rightarrow \nu_{e}$ $\nu_e \rightarrow \nu_e$

Backgrounds are "oscillated".

A sterile neutrino interpretation of the MiniBooNE anomaly is still allowed by MicroBooNE data at 3σ

A naive inspection of the ν_e spectra at MicroBooNE suggests that ν_e disappearance may be at play.

The deficit of ν_e events at MicroBooNE may be interpreted as evidence for ν_e disappearance.

Does MicroBooNE put an end to the MiniBooNE anomaly?

Clearly the answer is still no.

Q3

Full oscillation analysis should still be pursued by within the collaboration to confirm phenomenological study shown here.

But to move forward, we need decisive results:

The Short-Baseline Neutrino Program @ FNAL

Moving forward

In the Japaneses Spallation Neutron Source, $JSNS^2$ is performing a direct test of the LSND results.

Several new proposals

Several new proposals

PI M. Hostert

61

Several new proposals

PI M. Hostert

Modified from P. Machado - Neutrino 2020

Several new proposals

PI M. Hostert

Modified from P. Machado - Neutrino 2020

Heavy neutrinos + dark forces to accommodate MiniBooNE

Heavy neutrinos + dark forces to accommodate MiniBooNE

Dark sector coupled via neutrino portal + vector portal

$$\mathscr{L} \supset -\frac{\epsilon}{2} F_{\mu\nu} X^{\mu\nu} + y LHN + y' (\nu_D N) \Phi + g_D X_\mu (\nu_D \gamma^\mu \nu_D \gamma^\mu \nu_D$$

Light mediators (10 - 100s of MeV)

E. Bertuzzo et al., PRL121.241801 C. Argüelles, MH, Y. Tsai, *PRL*123.261801 + ...

Heavy mediators (~ GeV scale)

P. Ballett et al, PRD 99.071701 + ...

Inter-generational decays (~GeV scale)

P. Ballett, MH, S. Pascoli arxiv:1903.07589 A. Abdullahi, MH, S. Pascoli, arXiv:2007.11813

 $m_4 = 74 \text{ MeV}, \quad m_5 = 146 \text{ MeV}, \quad m_6 = 220 \text{ MeV}$

Dark neutrinos @ MicroBooNE

New generation of Liquid Argon detectors at Fermilab can search for (e+e-) events and will test MiniBooNE results.

Currently investigating these signatures in LAr together with microBooNE single-photon group.

Light Dark Photon: no proton so smaller efficiencies, but enhanced in LAr (A^2 coherent.) **Heavy Dark Photon:** shower displaced from proton. *Mostly photon-like showers.*

Conclusions

For the first time, MicroBooNE has shed light on the origin of the excess in a LArTPC Showed that it can disentangle the individual final states and topologies really well.

While a significant result, MicroBooNE still does not rule out ν_{ρ} interpretations of the MiniBooNE excess, Including the sterile neutrino interpretation.

> Several other models still untested lots of work to do in e+e- pairs, single (coherent) photons, and other ν_e models.

The MiniBooNE "electron-like" excess remain unexplained.

Thank you!

